Separation of scales and almost-periodic effects in the asymptotic behaviour of perforated periodic media
نویسندگان
چکیده
منابع مشابه
Permanence and Uniformly Asymptotic Stability of Almost Periodic Positive Solutions for a Dynamic Commensalism Model on Time Scales
In this paper, we study dynamic commensalism model with nonmonotic functional response, density dependent birth rates on time scales and derive sufficient conditions for the permanence. We also establish the existence and uniform asymptotic stability of unique almost periodic positive solution of the model by using Lyapunov functional method.
متن کاملSpectral Asymptotics in Porous Media
This thesis consists of two papers devoted to the asymptotic analysis of eigenvalue problems in perforated domains. The first paper investigates by means of the two-scale convergence method the asymptotic behavior of eigenvalues and eigenfunctions of Stekloff eigenvalue problems in perforated domains. We prove a concise and precise homogenization result including convergence of gradients of eig...
متن کاملCONTROL OF CHAOS IN A DRIVEN NON LINEAR DYNAMICAL SYSTEM
We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. Our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. It is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...
متن کاملOn the Asymptotic Behaviour of Some Elliptic Problems in Perforated Domains
The asymptotic behavior of the solution of a class of elliptic problems modeling diffusion in some periodic perforated media is analyzed. We consider, at the microscale, an elliptic equation with various nonlinear conditions prescribed on the boundary of the perforations and we prove that the effective behavior of the solution of such a problem is governed by another elliptic equation, which, d...
متن کاملA Finite Element Model for Simulating Flow around a Well with Helically Symmetric Perforations
In a perforated well, fluids enter the wellbore through array of perforation tunnels. These perforations are typically distributed in a helical pattern around the wellbore. Available numerical models to simulate production flow into cased-and-perforated vertical wells have complicated boundary conditions or suffer from high computational costs. This paper presents a simple and at the same time ...
متن کامل